Unit 1.1 Real Numbers

Students Learning Targets (SWBAT):

- Represent real numbers
- Order and Interval Notations
- Use basic properties of algebra
- Use properties of integer exponents to simplify expressions
- Write scientific notation

Assignment 1.1:

Find the decimal form for the rational number. State whether it repeats or terminates.

1.	-37/8	3.	-13/6
2.	15/99	4.	5/37

Describe and graph the interval of real numbers.

- 5. $x \le 2$ 6. $-2 \le x < 5$
- 7. (-∞,7) 8. [-3,3]
- 9. x is negative.

Use an inequality to describe the interval of real numbers.

- 10. [-1,1)11. $(-\infty, 4]$ 12. $-\frac{1}{-6}$ $-\frac{1}{-4}$ $-\frac{1}{2}$ 0 2 4 $-\frac{1}{6}$ 13. $\begin{pmatrix} -4 & -3 & -2 & -1 & 0 & 1 & 2 & 3 & 4 \\ + & + & + & + & + & + & + \end{pmatrix}$
- 14. x is between -1 and 2

Use interval notation to describe the interval of real number.

15. x > -317. x is greater than -3 and less than or
equal to 4.16. $-7 < x \le -2$ 18. x is positive.

Convert to inequality and interval notation. State whether the interval is bounded or unbounded.

 19. (-3,4] 21. $(-\infty,5)$

 20. (-3,-1) 22. $[-6,\infty)$

Use both inequality and interval notation to describe the set of numbers.

23. Bill is at least 29 years old.24. No item at Sarah's Variety Store costs
more than \$2.00.

 Salary raises at the State University of California at Chico will average between 2% and 6.5%.

Use the distributive property to write the factored form or the expanded form of the given expression.

26.
$$a(x^2 + b)$$
 28. $ax^2 + dx^2$

27.
$$(y - z^3)c$$
 29. $a^3z + a^3w$

Identify which algebraic property or properties are illustrated by the equation.

30.
$$(3x)y = 3(xy)$$
31. $a^2b + (-a^2b) = 0$ 32. $a^2b = ba^2$ 33. $(x + 3)^2 + 0 = (x + 3)^2$

34.
$$a(x + y) = ax + ay$$
 35. $(x + 2)\frac{1}{x+2} = 1$

36.
$$a \cdot (x + y) = x + y$$
 37. $2(x - y) = 2x - 2y$

Simplify the expression.

40.
$$(\frac{4}{x^2})^2$$
 41. $(\frac{2}{xy})^{-3}$

42.
$$\frac{(x^{-3}y^2)^{-4}}{(y^6x^{-4})^{-2}}$$
 43. $(\frac{4a^3b}{a^2b^3})(\frac{3b^2}{2a^2b^4})$

The following data gives the revenues in thousands of dollars for public elementary and secondary schools for the 2003-04 school year.

Source	Amount (in \$1000)
Federal	36,930,339
State	221,802,107
Local and Intermediate	193,175,805
Total	45,908,251

Write the amount of revenue in dollars obtained from the source in scientific notation.

44.	Federal
	<u>~</u>

46. Local and Intermediate

45. State

47. Total

Unit 1.2 Linear Equations and Inequalities

Students Learning Targets (SWBAT):

- Solve linear equations and linear inequalities.
- Solve for a variable in a linear equation

Assignment 1.2

Determine if it is a solution for the given value of x.

- 1. $2x^2 + 5x = 3; x = -3$ 2. $\sqrt{1 - x^2} + 2 = 3; x = -2$
- 3. $(x-2)^{1/3} = 2; x = 10$

Solve the equation.

4.
$$3t - 4 = 8$$
 5. $2x - 3 = 4x - 5$

6.
$$4 - 2x = 3x - 6$$

7. $4 - 3y = 2(y + 4)$

8.
$$4(y-2) = 5y$$

9. $\frac{1}{2}x + \frac{1}{3} = 1$

10.
$$\frac{1}{3}x + \frac{1}{4} = 1$$
 11. $2(3 - 4z) - 5(2z + 3) = z - 17$

Solve the equation. Support your answer with a calculator.

12.
$$\frac{2x-3}{4} + 5 = 3x$$
 13. $2x - 4 = \frac{4x-5}{3}$

Solve the inequality.

14. x - 4 < 2 15. $2x - 1 \le 4x + 3$

16.
$$3x - 1 \ge 6x + 8$$
 17. $2 \le x + 6 < 9$

$$18. -1 \le 3x - 2 < 7 \qquad \qquad 19. \ 2(5 - 3x) + 3(2x - 1) \le 2x + 1$$

20.
$$\frac{5x+7}{4} \le -3$$
 21. $\frac{2y-3}{2} + \frac{3y-1}{5} < y-1$

22.
$$\frac{1}{2}(x+3) + 2(x-4) < \frac{1}{3}(x-3)$$

23. Explain how the second equation was obtained from the first.

$$x - 3 = 2x + 3$$
, $x - \frac{1}{2} = x - 2$

24. The formula for the perimeter P is a rectangle is P = 2(L + W). Solve this equation for W.

25. The formula for the are A of a trapezoid is $A = \frac{1}{2}h(b_1 + b_2)$. Solve the equation for b_1 .

26. The formula for Celsius temperature in terms of Fahrenheit temperature is $C = \frac{5}{9}(F - 32)$. Solve the equation for *F*.

Unit 1.3 Solving Equations Graphically, Numerically, and Algebraically

Students Learning Targets (SWBAT):

- Solve equations graphically
- solve quadratic equations
- approximate solutions of equations graphically
- solve equations by finding intersections

Assignment 1.3

Solve the equation graphically by finding x-intercepts. Confirm by suing factoring to solve the equation.

1.
$$x^2 - x - 20 = 0$$

2. $x^2 - 8x = -15$

Solve the equation by extracting square roots.

3.
$$4x^2 = 25$$
 5. $(2x - 3)^2 = 169$

4.
$$2(x-5)^2 = 17$$

Solve the equation using the quadratic formula.

6.
$$x^2 + 8x - 2 = 0$$

7. $2x^2 - 3x + 1 = 0$

8. $3x + 4 = x^2$ 9. $x^2 - 2x + 6 = 2x^2 - 6x - 26$

Solve the equation graphically by finding x-intercepts.

10. $4x^2 + 20x = -23$ 11. $x^3 + x^2 + 2x - 3 = 0$

12. $x^2 + 4 = 4x$

Solve the equation graphically by finding intersections.

13. |x - 8| = 2 14. |x + 1| = 2x - 3

15.
$$|2x - 3| = x^2$$

16. $|x^2 - 3x| = 12 - 3(x - 2)$

17.
$$x + 2 - 2\sqrt{x+3} = 0$$
 18. $\sqrt{x+7} = -x^2 + 5$

19.
$$|x^2 + 4x - 1| = 7$$

Graph the inequality.

20.
$$2x + 5y \le 7$$
 21. $x^2 + y^2 < 9$

22.
$$y < x^2 + 1$$

Solve the system of inequalities.

23.
$$\begin{cases} y \ge x^2 - 2 \\ y \le 2x + 3 \end{cases}$$
 24.
$$\begin{cases} y \ge x^2 \\ x^2 + y^2 \le 4 \end{cases}$$

$$25. \begin{cases} x^2 + y^2 \le 9\\ y \ge |x| \end{cases}$$

26. The equation $\frac{x^2}{9} + \frac{y^2}{4} \le 1$ defines y as two implicit functions of x. Solve for y to find the two functions and draw the graph of the equations.

Unit 1.4 Radicals and Rational Expressions

Students Learning Targets (SWBAT):

- Simplify radical expressions
- Rationalize the denominator
- Manipulate rational exponents

Assignment 1.4:

Find the indicated real roots.

- 1. Square roots of 81 4. Fifth roots of 243
- 2. Fourth roots of 81
- 3. Cube roots of 64

- 5. square roots of 16/9
- 6. Cube roots of -27/8

Evaluate the expression without using a calculator.

7. $\sqrt{144}$ 8. $\sqrt{-16}$

9.
$$\sqrt[3]{-216}$$
 10. $\sqrt{\frac{64}{25}}$

11. $\sqrt[3]{-\frac{64}{27}}$

Simplify by removing factors from the radicand.

- 13. ³√500 12. $\sqrt{288}$ 14. $\sqrt[3]{-250}$ 15. ∜192 16. $\sqrt{2x^3y^4}$ 17. $\sqrt[3]{-27x^3y^6}$
- 19. $\sqrt[5]{96x^{10}}$ 18. $\sqrt[4]{3x^8y^6}$

Rationalize the denominator.

20. $\frac{1}{\sqrt{5}}$ 21. $\frac{4}{\sqrt[3]{2}}$

22.
$$\frac{1}{\sqrt[5]{x^2}}$$
 23. $\sqrt[3]{\frac{x^2}{y}}$

Convert to exponential form.

24.
$$\sqrt[3]{(a+2b)^2}$$
 25. $\sqrt[5]{x^2y^3}$

Convert to radical form.

26.
$$a^{\frac{3}{4}}b^{\frac{1}{4}}$$
 27. $x^{\frac{2}{3}}y^{\frac{1}{3}}$

28.
$$x^{-\frac{5}{3}}$$

Simplify the exponential expression.

29.
$$\frac{a^{\frac{3}{5}a^{\frac{1}{3}}}}{a^{\frac{3}{2}}}$$
 30. $(x^2y^4)^{\frac{1}{2}}$

31.
$$\left(\frac{-8x^6}{y^{-3}}\right)^{\frac{2}{3}}$$
 32. $\frac{\left(p^2q^4\right)^{\frac{1}{2}}}{\left(27q^3p^6\right)^{\frac{1}{3}}}$

Simplify the radical expression.

35.
$$\sqrt[3]{\frac{4x^2}{y^2}} \cdot \sqrt[3]{\frac{2x^2}{y}}$$
 36. $\sqrt[5]{9ab^6} \cdot \sqrt[5]{27a^2b^{-1}}$

37.
$$2\sqrt{175} - 4\sqrt{28}$$
 38. $\sqrt{x^3} - \sqrt{4xy^2}$

39. $\sqrt{18x^2y} + \sqrt{2y^3}$

Unit 1.5 Inverse Functions

Students Learning Targets (SWBAT):

- Find inverse functions
- Determine if a function has an inverse using it's graph

Assignment 1.5:

Find the equation for the inverse relation.

- 1. y = 4x 12. $y = 5x + \frac{1}{3}$
- 3. $y = -\frac{2}{3}x + 2$ 4. $y = -\frac{3}{5}x + \frac{7}{5}$
- 5. $f(x) = x^7$ 6. $f(x) = 4x^4, x \ge 0$

7.
$$f(x) = -\frac{2}{5}x^3$$

8. $f(x) = \frac{2x^3 - 6}{9}$

Graph the function *f*. Then use the graph to determine whether the inverse of *f* is a function.

- 9. f(x) = -x 5 10. $f(x) = \frac{1}{4}x^2$
- 11. $f(x) = \frac{1}{3}x^3$ 12. f(x) = |x| + 4

13.
$$f(x) = 4x^4 - 5x^2 - 6$$

- 14. The maximum hull speed v (in knots) of a boat with a displacement hull can be approximated by $v = 1.35\sqrt{l}$ where l is the length (in feet) of the boat's waterline. Find the inverse of the model. Then find the waterline length needed to achieve a maximum speed of 7.5 knots.
- 15. The body surface area A (in square meters) of a person with a mass of 60 kilograms can be approximated by the model $A = 0.2195h^{0.3964}$ where *h* is the person's height (in centimeters). Find the inverse of the model. Then estimate the height of a 60 kilogram person who has a body surface area of 1.6 square meters.